The previous week was quite interesting. I wrote the wrapper function fmpz_lll_wrapper and documented it. Test code for it was also added. Thus, the first milestone of the project was reached. Improvements to the module implemented thus far were made according to mentor comments. In particular, is_reduced functions and fmpz_mat_lll were improved to avoid storing GS vectors as suggested by Curtis on the mailing list. The function fmpz_lll_wrapper should now provide functionality identical to fpLLL and flint-1.6, but an additional feature in this version is that the Gram matrix can also be supplied for reduction instead of the lattice basis. It should be useful because the only other software which I've seen that allows passing a Gram matrix as input is Magma, which isn't open source.
The next step is LLL with removals. There seem to be 2 definitions for LLL_with_removal in literature: Both versions accept a basis (say B) and a bound (say N). Now, the intuitive definition seems to be that B is LLL reduced with bound N if for every vector b in B, norm(b) <= N. However, according to these papers by Mark van Hoeij, et al., it actually deals with the length of the Gram-Schmidt (GS) vectors i.e. the last vector is removed if its GS length is greater than N. Of course, for computational simplicity (and accuracy) I accept the squared norm bounding the GS length. Another point to be observed is that in flint-1.6, the bound is compared with half the squared GS length, probably because a fp approximation of the GS lengths is used. This is done to avoid removing something valuable. Also, the documentation is a bit ambiguous as it mentions that the bound is for the "target vectors". I'm going with van Hoeij's definition because he mentions it in the context of factoring polynomials which applies to a possible use of LLL in FLINT.
I am not sure if LLL with removals requires a version for the Gram matrix as input, as the only mentions of it in literature relate to factoring polynomials which input a lattice basis to the procedure. So, I haven't written a Gram matrix variant for now. Although, I may implement it later, if it's good to have.
My version of LLL_with_removal works even when I directly compare the bound with the squared GS norm because I avoid conversion to doubles and instead compare fmpz_t's. This was ascertained from the test code for fmpz_lll_d_with_removal. Documentation for fmpz_lll_d_with_removal and fmpz_mat_is_reduced_with_removal in the corresponding modules was added.
This week, I plan to write the fmpz_lll_d_heuristic_with_removal function, along with its test code and documentation. If things are smooth, maybe I can even work on the arbitrary precision variant.
The next step is LLL with removals. There seem to be 2 definitions for LLL_with_removal in literature: Both versions accept a basis (say B) and a bound (say N). Now, the intuitive definition seems to be that B is LLL reduced with bound N if for every vector b in B, norm(b) <= N. However, according to these papers by Mark van Hoeij, et al., it actually deals with the length of the Gram-Schmidt (GS) vectors i.e. the last vector is removed if its GS length is greater than N. Of course, for computational simplicity (and accuracy) I accept the squared norm bounding the GS length. Another point to be observed is that in flint-1.6, the bound is compared with half the squared GS length, probably because a fp approximation of the GS lengths is used. This is done to avoid removing something valuable. Also, the documentation is a bit ambiguous as it mentions that the bound is for the "target vectors". I'm going with van Hoeij's definition because he mentions it in the context of factoring polynomials which applies to a possible use of LLL in FLINT.
I am not sure if LLL with removals requires a version for the Gram matrix as input, as the only mentions of it in literature relate to factoring polynomials which input a lattice basis to the procedure. So, I haven't written a Gram matrix variant for now. Although, I may implement it later, if it's good to have.
My version of LLL_with_removal works even when I directly compare the bound with the squared GS norm because I avoid conversion to doubles and instead compare fmpz_t's. This was ascertained from the test code for fmpz_lll_d_with_removal. Documentation for fmpz_lll_d_with_removal and fmpz_mat_is_reduced_with_removal in the corresponding modules was added.
This week, I plan to write the fmpz_lll_d_heuristic_with_removal function, along with its test code and documentation. If things are smooth, maybe I can even work on the arbitrary precision variant.