Monday, 16 June 2014

Week 4

This last week has been a productive one. I implemented check_babai_heuristic (the Babai version using mpfs) and documented it.  Helper functions for this were also implemented in the fmpz and fmpz_vec modules. The fmpz_lll_mpf2 function was also written. The "2" in the name of the function signifies that it takes the precision to be used for storing the temporary variables and the GSO data (also the approximate Gram matrix if fl->rt == APPROX) as arguments, or in other words mpf_init2 is used for initialising any intermediate mpf_t's used. The wrapper for this is fmpz_lll_mpf which increases the precision until the LLL is successful or God forbid, the precision maxes out. Test code for lll_mpf was added. Also, the test code now uses the fmpz_mat versions of is_reduced and is_reduced_gram which use exact arithmetic to check if a basis is LLL reduced and help cover edge cases.

Also, there's some good news to report. The lll_d and lll_d_heuristic functions now work on all test cases without failure for Z_BASIS as input matrix! With GRAM, they fail sometimes due to inadequate precision of double to store large values. I can confirm that fmpz_lll_d works for the 35 dimensional lattice on the web page for the L^2 paper by Nguyen and Stehle (tested against fplll-4.0.4). I also tested fmpz_lll_mpf with the 55-dimensional lattice which makes NTL's LLL_FP (with delta=0.99) loop forever. It works! :) The output produced is the same as that if the matrix is passed to fpLLL with the "-m proved" option.

This week, I look forward to writing the LLL wrapper fmpz_lll_wrapper and documenting it besides improving the part of the module implemented so far and fixing bugs, if any. I also plan to document those functions which were left undocumented and shift fmpq_mat_lll to the fmpz_mat module and rename it to avoid confusion.

No comments :

Post a Comment